Profiling Cloud Liquid Water by Combining Active and Passive Microwave Measurements with Cloud Model Statistics

نویسندگان

  • U. LÖHNERT
  • S. CREWELL
  • C. SIMMER
  • A. MACKE
چکیده

A method for combining ground-based passive microwave radiometer retrievals of integrated liquid water (LWP), radar reflectivity profiles (Z ), and statistics of a cloud model is proposed for deriving cloud liquid water profiles (LWC). A dynamic cloud model is used to determine Z–LWC relations and their errors as functions of height above cloud base. The cloud model is also used to develop an LWP algorithm based on simulations of brightness temperatures of a 20–30-GHz radiometer. For the retrieval of LWC, the radar determined Z profile, the passive microwave retrieved LWP, and a model climatology are combined by an inverse error covariance weighting method. Model studies indicate that LWC retrievals with this method result in rms errors that are about 10%–20% smaller in comparison to a conventional LWC algorithm, which constrains the LWC profile exactly to the measured LWP. According to the new algorithm, errors in the range of 30%–60% are to be anticipated when profiling LWC. The algorithm is applied to a time series measurement of a stratocumulus layer at GKSS in Geesthacht, Germany. The GKSS 95-GHz cloud radar, a 20–30-GHz microwave radiometer, and a laser ceilometer were collocated within a 5-m radius and operated continuously during the measurement period. The laser ceilometer was used to confirm the presence of drizzle-sized drops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential for estimating cloud liquid water path over sea ice from airborne passive microwave measurements

[1] In this paper we investigate the feasibility of determining cloud liquid water path from passive microwave measurements over sea ice. Simulations using a 32-stream plane-parallel microwave radiative transfer model indicate a consistent increase in brightness temperature attributable to cloud liquid water for conditions observed in the Arctic during the Surface Heat Budget of the Arctic (SHE...

متن کامل

A Miniaturized Water Vapor Profiling Radiometer for Network-based 3-D Measurements of the Tropospheric Water Vapor Field

Knowledge of the temporal and spatial distribution of water vapor and liquid water in the troposphere is fundamental for shortand medium-range prediction of precipitation and severe weather. Current measurements of these quantities in the troposphere are limited by optical extinction in clouds (lidar), in temporal resolution (radiosondes), in spatial resolution (GPS networks) and in spatial cov...

متن کامل

Impact of Cloud Model Microphysics on Passive Microwave Retrievals of Cloud Properties. Part II: Uncertainty in Rain, Hydrometeor Structure, and Latent Heating Retrievals

The impact of model microphysics on the retrieval of cloud properties based on passive microwave observations was examined using a three-dimensional, nonhydrostatic, adaptive-grid cloud model to simulate a mesoscale convective system over ocean. Two microphysical schemes, based on similar bulk two-class liquid and three-class ice parameterizations, were used to simulate storms with differing am...

متن کامل

AMSU-B Observations of Mixed-Phase Clouds over Land

Measurements from passive microwave satellite instruments such as the Advanced Microwave Sounding Unit B (AMSU-B) are sensitive to both liquid and ice cloud particles. Radiative transfer modeling is exploited to simulate the response of the AMSU-B instrument to mixed-phase clouds over land. The plane-parallel radiative transfer model employed for the study accounts for scattering and absorption...

متن کامل

Snow scattering signals in ground‐based passive microwave radiometer measurements

[1] This paper investigates the influence of snow microphysical parameters on the enhancement of ground‐based passive microwave brightness temperature (TB) measurements. In addition to multispectral passive microwave observations between 20 and 150 GHz, a 35 GHz cloud radar and a 2‐D video disdrometer for in situ measurements of snowfall were deployed as part of the “towards an optimal estimati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001